Newly Developed Enhanced Imperialistic Competitive Algorithm for Design Optimization of an Autonomous Hybrid Green Power System
نویسندگان
چکیده
The importance of economics for owning hybrid green power systems (HGPS) warrants development of optimization methodologies with more effective search capabilities for determination of global minimum for costs. The objective of this study is to present several newly developed enhancements for imperialistic competitive algorithm (ICA) for design optimization of an autonomous HGPS with considerations for economics and reliability. HGPS examined consists of photovoltaic (PV) modules in a panel, wind turbines (WT), and storage batteries (SB). Utilizing an IEEE load profile and actual solar irradiation and wind speed data, the economics is evaluated based on annualized cost of system (ACS) and reliability constraint specified in terms of loss of power supply probability (LPSP). The simulation results show that enhanced ICA (EICA) developed in this study has a better convergence rate, as compared with other population based optimization methods such as ICA and genetic algorithm (GA). It is found that the new enhancements developed for EICA result in lower computation time for determining the optimal configuration of HGPS equipment by 40 and 79 % for ICA and GA, respectively. For LPSP of 2 %, it is determined that EICA results in lower ACS by 11.60 and 6 % in comparison with ICA and GA, respectively. For computation time, convergence occurs in 33, 55, and 160 minutes for EICA, ICA, and GA algorithms, respectively.
منابع مشابه
Design and analysis of hybrid systems solar, wind, osmotic for green plants using ant colony optimization algorithm
Nature has always proven that it is able to overcome its problems. However, human manipulation has led to environmental degradations. The dryness of a thousand-year Urmia Lake (a brinewater lake in Iran) is an example of environmental degradation that happened due to successive droughts and construction of dams on the basin of this lake. This study examines methods for the revival of Urmia Lake...
متن کاملA New Algorithm for Load Flow Analysis in Autonomous Networks
In this paper, a novel algorithm for the load flow analysis problem in an islanded microgrid is proposed. The problem is modeled without any slack bus by considering the steady state frequency as one of the load flow variables. To model different control modes of DGs, such as droop, PV and PQ, in an islanded microgrid, a new formula for load flow equations is proposed. A hybrid optimization alg...
متن کاملUsing an Imperialistic Competitive Algorithm in Global Polynomials Optimization (Case Study: 2D Geometric Correction of IKONOS and SPOT Imagery)
The number of high resolution space imageries in photogrammetry and remote sensing society is growing fast. Although these images provide rich data, the lack of sensor calibration information and ephemeris data does not allow the users to apply precise physical models to establish the functional relationship between image space and object space. As an alternative solution, some generalized mode...
متن کاملOptimal Location and Parameter Settings of UPFC Device in Transmission System based on Imperialistic Competitive Algorithm
In this paper, we present a new method to determine the optimal location and parameter settings of UnifiedPower Flow Controller (UPFC) for removing voltage violations and transmission lines overloading. UPFC isconsidered as the most powerful member of the FACTS devices, that it can control shunt and series power flow.This option gives to UPFC the power to control the voltage profile and transmi...
متن کاملOptimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm
The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...
متن کامل